1. Agrawal VB, Tsai RJ. Corneal epithelial wound healing.
Indian J Ophthalmol 2003;51:5-15.
2. Wilson SE. Corneal wound healing.
Exp Eye Res 2020;197:108089.
3. Ljubimov AV, Saghizadeh M. Progress in corneal wound healing.
Prog Retin Eye Res 2015;49:17-45.
4. Krannig HM, Rohde-Germann H, Straub W. Therapy of corneal erosions and ‘dry eye’ with Solcoseryl and Vitasic eye drops.
Ophthalmologica 1989;199:100-5.
5. Lazzarotto M, Tomasello EM, Caporossi A. Clinical evaluation of corneal epithelialization after photorefractive keratectomy in a patient treated with Polydeoxyribonucleotide (PDRN) eye drops: a randomized, double-blind, placebo-controlled trial. Eur J Ophthalmol 2004;14:284-9.
6. Wilmink JM, Stolk PW, van Weeren PR, Barneveld A. The effectiveness of the haemodialysate Solcoseryl for second-intention wound healing in horses and ponies.
J Vet Med A Physiol Pathol Clin Med 2000;47:311-20.
7. Nam SM, Maeng YS. Wound healing and mucin gene expression of human corneal epithelial cells treated with deproteinized extract of calf blood.
Curr Eye Res 2019;44:1181-8.
8. Erbe W, Herrmann R, Korner WF, Rohde-Germann H, Straub W. Our experience with Solcoseryl Eye-Gel in the treatment of corneal lesions: a randomised double-blind study (with 1 color plate).
Ophthalmologica 1984;188:1-4.
9. Studer O. A comparative clinical study of Solcoseryl Eye-Gel and Cysteine Eye-Gel 2.4% in the treatment of foreign-body injuries of the cornea.
Ophthalmic Res 1984;16:179-84.
10. Egger SF, Huber-Spitzy V, Alzner E, et al. Corneal wound healing after superficial foreign body injury: vitamin A and dexpanthenol versus a calf blood extract: a randomized double-blind study.
Ophthalmologica 1999;213:246-9.
11. Squadrito F, Bitto A, Irrera N, et al. Pharmacological activity and clinical use of PDRN.
Front Pharmacol 2017;8:224.
12. Kim S, Jang YW, Ku YA, et al. Investigating the anti-inflammatory effects of RCI001 for treating ocular surface diseases: insight into the mechanism of action.
Front Immunol -2022. 13:850287.
13. Chernikov AV, Gudkov SV, Usacheva AM, Bruskov VI. Exogenous 8-Oxo-7,8-dihydro-2′-deoxyguanosine: biomedical properties, mechanisms of action, and therapeutic potential.
Biochemistry (Mosc) 2017;82:1686-701.
14. Im ST, Kim HY, Yoon JY, et al. Therapeutic effects of topical 8-Oxo-2′-deoxyguanosine on ethanol-induced ocular chemical injury models.
Cornea 2018;37:1311-7.
16. Kim DH, Jung Y, Moon JY, et al. Therapeutic effects of topical RCI001 on environmental and inflammation-related dry eye mouse models. Invest Ophthalmol Vis Sci -2021. 62:1322.
17. Oh JY, Roddy GW, Choi H, et al. Anti-inflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury.
Proc Natl Acad Sci U S A 2010;107:16875-80.
18. Choy EP, Cho P, Benzie IF, et al. A novel porcine dry eye model system (pDEM) with simulated lacrimation/blinking system: preliminary findings on system variability and effect of corneal drying.
Curr Eye Res 2004;28:319-25.
19. Kubota M, Shimmura S, Kubota S, et al. Hydrogen and N-acetyl-L-cysteine rescue oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model.
Invest Ophthalmol Vis Sci 2011;52:427-33.
20. Wilson SE, Mohan RR, Mohan RR, et al. The corneal wound healing response: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells.
Prog Retin Eye Res 2001;20:625-37.
21. Gu XJ, Liu X, Chen YY, et al. Involvement of NADPH oxidases in alkali burn-induced corneal injury.
Int J Mol Med 2016;38:75-82.
22. Fortingo N, Melnyk S, Sutton SH, et al. Innate immune system activation, inflammation and corneal wound healing.
Int J Mol Sci 2022;23:14933.
23. Zieske JD, Gipson IK. Protein synthesis during corneal epithelial wound healing. Invest Ophthalmol Vis Sci 1986;27:1-7.
24. Panjwani N, Michalopoulos G, Song J, et al. Neutral glycolipids of migrating and nonmigrating rabbit corneal epithelium in organ and cell culture.
Invest Ophthalmol Vis Sci 1990;31:689-95.
25. Stepp MA. Corneal integrins and their functions.
Exp Eye Res 2006;83:3-15.
26. Carter RT. The role of integrins in corneal wound healing.
Vet Ophthalmol 2009;12:Suppl 1. 2-9.
27. Zernii EY, Baksheeva VE, Yani EV, et al. Therapeutic proteins for treatment of corneal epithelial defects.
Curr Med Chem 2019;26:517-45.
28. Wilson SE, Marino GK, Torricelli AA, Medeiros CS. Injury and defective regeneration of the epithelial basement membrane in corneal fibrosis: a paradigm for fibrosis in other organs?
Matrix Biol 2017;64:17-26.
29. Vaidyanathan U, Hopping GC, Liu HY, et al. Persistent corneal epithelial defects: a review article.
Med Hypothesis Discov Innov Ophthalmol 2019;8:163-76.
30. Isler H, Bauen A, Baschong W. Topical treatment of standardized burns with a protein-free haemodialysate.
Burns 1991;17:93-7.
31. Isler H, Bauen A, Hubler M, Oberholzer M. Morphometric assessment of wound healing in rats treated with a protein-free haemodialysate.
Burns 1991;17:99-103.
32. Konturek SJ, Brzozowski T, Dembinski A, et al. Comparison of solcoseryl and epidermal growth factors (EGF) in healing of chronic gastroduodenal ulcerations and mucosal growth in rats.
Hepatogastroenterology 1988;35:25-9.
33. Niinikoski J, Laato M, Tschannen R, Fraefel W. Effect of a hexosylceramide fraction of the hemodialysate Solcoseryl on wound-healing angiogenesis.
J Surg Res 1986;40:261-4.
34. Kim H, Kim HB, Seo JH, et al. Effect of Solcoseryl in corneal alkali burn rat model.
Med Lasers 2021;10:22-30.
35. Choi JS, Joo CK. Polydeoxyribonucleotide (PDRN) inhibits corneal inflammation in experimental rat keratoconjunctivitis sicca model. Invest Ophthalmol Vis Sci 2016;57:5730.
36. Edirisinghe SL, Nikapitiya C, Dananjaya SH, et al. Effect of polydeoxyribonucleotide (PDRN) treatment on corneal wound healing in Zebrafish (Danio rerio).
Int J Mol Sci 2022;23:13525.
37. Ko SH. Lee JK, Lee HJ, et al. 8-Oxo-2′-deoxyguanosine ameliorates features of metabolic syndrome in obese mice.
Biochem Biophys Res Commun 2014;443:610-6.
38. Lee JK, Ko SH, Ye SK, Chung MH. 8-Oxo-2′-deoxyguanosine ameliorates UVB-induced skin damage in hairless mice by scavenging reactive oxygen species and inhibiting MMP expression.
J Dermatol Sci 2013;70:49-57.
39. Ock CY, Hong KS, Choi KS, et al. A novel approach for stress-induced gastritis based on paradoxical anti-oxidative and anti-inflammatory action of exogenous 8-hydroxydeoxyguanosine.
Biochem Pharmacol 2011;81:111-22.
40. Huh JY, Son DJ, Lee Y, et al. 8-Hydroxy-2-deoxyguanosine prevents plaque formation and inhibits vascular smooth muscle cell activation through Rac1 inactivation.
Free Radic Biol Med 2012;53:109-21.
41. Kim HS, Ye SK, Cho IH, et al. 8-hydroxydeoxyguanosine suppresses NO production and COX-2 activity via Rac1/STATs signaling in LPS-induced brain microglia.
Free Radic Biol Med 2006;41:1392-403.
42. Lee SH, Han ST, Choi SW, et al. Inhibition of Rac and Rac-linked functions by 8-oxo-2′-deoxyguanosine in murine macrophages.
Free Radic Res 2009;43:78-84.
43. Hordijk PL. Regulation of NADPH oxidases: the role of Rac proteins.
Circ Res 2006;98:453-62.
44. Bian F, Xiao Y, Zaheer M, et al. Inhibition of NLRP3 inflammasome pathway by butyrate improves corneal wound healing in corneal alkali burn.
Int J Mol Sci -2017. 18:562.
45. Wang Y, Wan L, Zhang Z, et al. Topical calcitriol application promotes diabetic corneal wound healing and reinnervation through inhibiting NLRP3 inflammasome activation.
Exp Eye Res 2021;209:108668.
46. Zheng Q, Ren Y, Reinach PS, et al. Reactive oxygen species activated NLRP3 inflammasomes prime environment-induced murine dry eye.
Exp Eye Res 2014;125:1-8.