1. Goldbaum MH. Unsupervised learning with independent component analysis can identify patterns of glaucomatous visual field defects.
Trans Am Ophthalmol Soc 2005;103:270-280.
2. Asman P, Heijl A. Glaucoma hemifield test: automated visual field evaluation.
Arch Ophthalmol 1992;110:812-819.
3. Marin-Franch I, Swanson WH, Malinovsky VE. A novel strategy for the estimation of the general height of the visual field in patients with glaucoma.
Graefes Arch Clin Exp Ophthalmol 2014;252:801-809.
4. Iester M, De Feo F, Douglas GR. Visual field loss morphology in high- and normal-tension glaucoma.
J Ophthalmol 2012;2012:327326.
5. Nouri-Mahdavi K, Hoffman D, Gaasterland D, Caprioli J. Prediction of visual field progression in glaucoma.
Invest Ophthalmol Vis Sci 2004;45:4346-4351.
6. Wilkins MR, Fitzke FW, Khaw PT. Pointwise linear progression criteria and the detection of visual field change in a glaucoma trial.
Eye (Lond) 2006;20:98-106.
7. De Moraes CG, Liebmann CA, Susanna R Jr, et al. Examination of the performance of different pointwise linear regression progression criteria to detect glaucomatous visual field change.
Clin Exp Ophthalmol 2012;40:e190-e196.
8. Viswanathan AC, Fitzke FW, Hitchings RA. Early detection of visual field progression in glaucoma: a comparison of PROGRESSOR and STATPAC 2.
Br J Ophthalmol 1997;81:1037-1042.
9. Caprioli J, Mock D, Bitrian E, et al. A method to measure and predict rates of regional visual field decay in glaucoma.
Invest Ophthalmol Vis Sci 2011;52:4765-4773.
10. Bengtsson B, Heijl A. A visual field index for calculation of glaucoma rate of progression.
Am J Ophthalmol 2008;145:343-353.
11. Cho JW, Sung KR, Yun SC, et al. Progression detection in different stages of glaucoma: mean deviation versus visual field index.
Jpn J Ophthalmol 2012;56:128-133.
12. Bengtsson B, Patella VM, Heijl A. Prediction of glaucomatous visual field loss by extrapolation of linear trends.
Arch Ophthalmol 2009;127:1610-1615.
13. Nouri-Mahdavi K, Mock D, Hosseini H, et al. Pointwise rates of visual field progression cluster according to retinal nerve fiber layer bundles.
Invest Ophthalmol Vis Sci 2012;53:2390-2394.
14. Strouthidis NG, Vinciotti V, Tucker AJ, et al. Structure and function in glaucoma: the relationship between a functional visual field map and an anatomic retinal map.
Invest Ophthalmol Vis Sci 2006;47:5356-5362.
15. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma.
Am J Ophthalmol 1989;107:453-464.
16. Yousefi S, Goldbaum MH, Balasubramanian M, et al. Learning from data: recognizing glaucomatous defect patterns and detecting progression from visual field measurements.
IEEE Trans Biomed Eng 2014;61:2112-2124.
17. Bresson-Dumont H, Hatton J, Foucher J, Fonteneau M. Visual field progression in glaucoma: cluster analysis.
J Fr Ophtalmol 2012;35:735-741.
18. Pascual JP, Schiefer U, Paetzold J, et al. Spatial characteristics of visual field progression determined by Monte Carlo simulation: diagnostic innovations in glaucoma study.
Invest Ophthalmol Vis Sci 2007;48:1642-1650.
19. Carroll JD, Chang JJ. Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition.
Psychometrika 1970;35:283-319.
20. Harshman RA. Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multimodal factor analysis. Los Angeles: University of California at Los Angeles; 1970. p. 1-84.
21. Bro R. PARAFAC: tutorial and applications.
Chemom Intell Lab Syst 1997;38:149-171.
22. Deburchgraeve W, Cherian PJ, De Vos M, et al. Neonatal seizure localization using PARAFAC decomposition.
Clin Neurophysiol 2009;120:1787-1796.
23. Miwakeichi F, Martinez-Montes E, Valdes-Sosa PA, et al. Decomposing EEG data into space-time-frequency components using Parallel Factor Analysis.
Neuroimage 2004;22:1035-1045.
24. Beckmann CF, Smith SM. Tensorial extensions of independent component analysis for multisubject FMRI analysis.
Neuroimage 2005;25:294-311.
25. Martinez-Montes E, Valdes-Sosa PA, Miwakeichi F, et al. Concurrent EEG/fMRI analysis by multiway Partial Least Squares.
Neuroimage 2004;22:1023-1034.
26. Giordani P, Kiers HA, Del Ferraro MA. Three-way component analysis using the R package ThreeWay. J Stat Softw 2014;4 22
27. Kruskal JB. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics.
Linear Algebra Appl 1977;18:95-138.
28. Del Ferraro MA, Kiers HA, Giordani P.
ThreeWay: three-way component analysis (version 1.1.3) [Internet]. [place unknown]: Comprehensive R Archive Network; 2015. cited 2018 Dec 18. Available:
https://cran.r-project.org/web/packages/ThreeWay/.
29. He B, Liu Z. Multimodal functional neuroimaging: integrating functional MRI and EEG/MEG.
IEEE Rev Biomed Eng 2008;1:23-40.
30. Varoquaux G, Sadaghiani S, Pinel P, et al. A group model for stable multi-subject ICA on fMRI datasets.
Neuroimage 2010;51:288-299.
31. Robinson SD, Schopf V. ICA of f MRI studies: new approaches and cutting edge applications.
Front Hum Neurosci 2013;7:724
32. Sui J, Pearlson G, Caprihan A, et al. Discriminating schizophrenia and bipolar disorder by fusing f MRI and DTI in a multimodal CCA+ joint ICA model.
Neuroimage 2011;57:839-855.
33. Weis M, Jannek D, Roemer F, et al. Multi-dimensional PARAFAC2 component analysis of multi-channel EEG data including temporal tracking.
Conf Proc IEEE Eng Med Biol Soc 2010;2010:5375-5378.
34. De Moraes CG, Demirel S, Gardiner SK, et al. Effect of treatment on the rate of visual field change in the ocular hypertension treatment study observation group.
Invest Ophthalmol Vis Sci 2012;53:1704-1709.
35. Lee JR, Sung KR, Na JH, et al. Discrepancy between optic disc and nerve fiber layer assessment and optical coherence tomography in detecting glaucomatous progression.
Jpn J Ophthalmol 2013;57:546-552.
36. Na JH, Sung KR, Baek SH, et al. Rates a nd patterns of macular and circumpapillary retinal nerve fiber layer thinning in preperimetric and perimetric glaucomatous eyes.
J Glaucoma 2015;24:278-285.